Case 4:05-cv-00329-GKF-PJC  Document 2270-26 Filed in USDC ND/OK on 06/19/2009 Page 1 of 7

EXHIBIT X




Case 4:05-cv-00329-GKF-PJC  Document 2270-26 Filed in USDC ND/OK on 06/19/2009 Page 2 of 7

200 [No. 3,

The Empirical Distribution Function with Arbitrarily Grouped,
Censored and Truncated Data

By Bruce W, TURNBULL
Universily of Oxford and Cornell University
[Received May 1975, Revised May 1976]

SUMMARY
This paper is concerned with the non-~paramestric estimation of a distribution function
F, when the data are incomplete due to grouping, censoring and/or truncation. Using
the idea of self-consistency, a simple algorithm is constructed and shown to converge
monotonically {o yield a maximum likelihood estimate of F. An application to j
hypothesis testing is indicated. . ;
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1. INTRODUCTION i
WE consider the non-parametric estimation of the distribution function F of a real-valued
random variable ¥, when the sample data are incomplete due to restricted observation brought i
about by grouping, censoring andfor truncation. More precisely the situation is as follows. i
Subsets By, B,, ..., By of the real line are given and there are N independent observations ;
Xy =%y ..y Xy =Xy, where X;(1<i<N} is drawn from the truncated distribution i
F{x; B) = P(X<x| XeB), XeB; Thus X;is truncated by B; or, in other words, the experi- i
menter would not have been aware of the existence of that observation had X, not belonged i
to B;. Moreover X; (1 <7< N) may not be observed exactly and is known only te lie in the set g
A; where A, B, Thus X; is censored into the sgt 4, Grouped data can be naturally con-.
sidered as censored, where each observation is censered into one of a fixed collection of dis- [
joint sets. ‘The observed data are then the N pairs (dy, B (dy, By, -s s Ba).

The truncating sets {B,} can either be viewed as fixed or as random. We can now think of &
partition of the set B; and 4, as that member of the partition into which X falls. Again the
partition can be viewed either as fixed or as having arisen from some random mechanism
independent of X;. In many cases, the partition of B; will be unknown (except for the fact that
A, belongs to it); these assumptions will make knowledge of the partition irrelevant to the
estimation of F. The case of grouped data can be considered as one in which the partitions
are known and are the same for each i {l I N).

If B; = (~c0,w0) then X is not truncated, and if 4, consists of a single point then X, is
uncensored, i.e. is exget. We say that X; is inzersal censored if A4, is of the form [L,, R;] and X
is right (left) censored if By =+ oo (L; = —o0). Of course if L; = R;, then X; is exact. Interval, 3
right and left truncation are defined similarly.

Interval censoring occurs naturally when the {X7} represent response times and there is
periodic inspection, &.g. in medical or correctional follow-up or in industrial life-testing.
Here the sets {4,} may overlap because sample items can enter the programme at different
ages. Also the bioassay problem of Ayer er al. (1955) can be considered an extreme case of
double censoring. Truncation can eccur if the population from which X is drawn has been 1
subject to some screening procedure in which all items with x-values outside B, have been
removed. This situation can arise in consumer product testing, for example, Concerning
survivorship analysis, Mantel (1966) mentions left truncation in the context of merging clinical
trials. Here a group of survivors at & certain point in time is to be incorporated into ongoing Po-
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study data when the original size of the group of which these are a remnant is unknown. The
re-entry problem is another example where there can be a more general truncation pattern.
This situation occurs when a person can be lost to follow-up, by leaving a health insurance
programme for instance, but then he rejoins at a later date.

If some parametric form for F can be assumed, then the method of Blight (1970) can be
applied directly. (See also Hartley and Hocking, 1971 and Sundberg, 1974.) We will assume
that there are no parametric assumptions and obtain the analogue of the sample c.d.f, (when
there is exact data with no truncation} and of the Kaplan and Meier (1958) PL estimator (right
censoring with possibly left {runcation).

2. REDUCTION OF THE PROBLEM
We first show that the maximum likelihood estimate, £, of # increases in only a finite
number of disjoint intervals (or points), We shall use the same notation as Peto {1973) who
obtained a similar result for interval censoring with no truncation.
Let us assume that each 4; (1 £ i< N) can be expressed as the finite unfon of disjoint closed
intervals, with the convention that an isolated point {x} is a closed interval [x,x] and that a
serni-infinite interval is semi-closed only. Thus we can write

A= ;;1 Hep Ryl (=128,

where — <Ly SRy <Lp< ... <Ly K Ry, <0 and Ry > —o0, Ly <o0. We now construct a
set of disjoint intervals whose left and right end points lie in the sets {Ly; 1< j<k, 1<iSN}
and {R,; 1 <<k, 1<i< N respectively, and which contain no other members of {Ly} or
{R;} except at their end points. We write these intervals [gy, o], [qs 251 - {9 Py Whera
&P <GaS ... <Gy S Py Also define C = R, [g;, py).

Under the assumption of Section 1, the liéelihood is proportional to...

st

We will assume that Pp(u B)) = 1, which occurs for instance if at least one observation is not
truncated, The search for that function F that mgximizes (2.1) is facilitated by the following
two lemmas, whick can be easily proved upon examination of L*®,

Lemana 1. Any c.d.f. which increases outside the set C cannot be 2 maximum kikelihood
estimate of F, except in the trivial case when A;nC = B;n C for all £

Lemma 2. For fixed values of F(p,+), F(g;—) (1 €j<m), the likelihood is independent of
the behaviour of F within each interval [gp, prl. '

Now, for 1<j<m, de&nmﬁ‘(ﬁ-;t}—?(q‘,,%:):‘ Then the vectors § = {5y, ..., 5y,) Wwhere
T s =1 and 5,0, define eqtiivalence classés o1 the space of distribution functions ¥ which are
flat outside C. We will say that two such functions are equivalent if they have the same s-
vectors. All functions in the same equivalence class will have the same likelihood by Lemma 2,
and Lemma 1 shows that we can restrict our search for an MLE to these classes. Thergfore thg.
MLE will, at best, be unique only up to equivalence defined in. thi
Fight ceiisored datd,” fhe Kaplan-Meier P estimate, is, undefined at the exz ervati
pointsand 8 aiistEEval 1L, o], say, if the largest observation is at L and is censored,
——The Toregoing discussion shows the probleni B makimizing (2.1) reduces™id ons of
maximizing .

n - 1| EI{F(R{&)—F(LW)}];[?Fwo. y @0

N fm ni
LMy, sy =TT (E s s,/}_]ﬁusj), (2.2}
AP SR i

subject to 385 = 1, 520 (1 <j<m), where ey =1 if [g;, py]S 4y, O otherwise, and B =1 if
{95 )< B;, 0 otherwise, We remark that we would be able to write down (2.2) immediately !
ag the likelihood if there were a discrete scale for X {(ie. X could oumly take on values |
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ty, Fas vevs Ips 58¥). Then we would define 5; = P(X = ;). Let 8 = (§,...,&,) denote a value of !
s for which I* attains its maximum in the region & ={s|Zs =1, 520 (1<j<m)} We
assume that meither of the following two trivial situations hold: (A) There exist /& with
1<j,k<m and j#k such that wy = ay, for all {(1<i<N), nor (B) There cxists a subset D
such that for each #, I <I< N, either B,nC< D or Byn C= B¢, If (A) oceurs, L* depends on
and s, only through their sum. In case (B) only the ratio 5;/(Zg . psy) is egtimable for je D and
hence & is defined only up to a multiplicative constant. If either (A) or (B) occurs, § is not
unique and the maximum lkelihood estimate # will be determined only as far as belonging to ;
a certain union of equivalence classes, E

3. THE SELF-CONSISTENCY ALGORICHM
In this section, we describe an algorithm for obtaining the MLE of s based on the equiva-
lence between the property of maximum likelihood and that of self-consistency. This latter
property will be defined precisely below; it is an extension of the idea first used by Efron (1967)
for right censored data and later by Turabull (1974) for doubly censored data.
For 1<i<N, 1gj<m, let Iy =1if x;€[g;, p;] and O otherwise. Because of the censoring
the value of Iy may not be known, however its expectation is given by

m
E ] = oy, / ’Etl“ik 5= jpy(8), say. (3.1}

Thus p(s) represents the probability that the ith observation lies in gy, p;] when F belongs
to the equivalence class defined by s=(s;,...,5,). Also, because of the truncation, each
observation X; = X,, can be considered a remnant of a group, the size of which is unknown
and all (except the one observed) with x-values in BJ. {They can be thought of as Xs “ghosts™.)
Let J;; be the number in the group corresponding to the fth observation which have values in
lg;, ;1. Of course Jy; is unknown bat its expectation, under s, is given by

E(y) = (1-Bs;| 3 Buse =) say. 3.2) !
Kl ;

If we treated {3.1) and (3.2) as observed rather than expected frequencies, the proportion of
observations in interval {g;, p,} is ;

g{m;(s)w(s)}mcs) =8 sy, (3.3)
where -

Mo =3 B @+

Note that M(s}> ¥ with equality if there is no truncation for then v = 0 for all 4, . We say
that the vector of probabilities s is self~consistent if

$y= a8y, 08, (Aj<m) (3.4)
A self-consistent estimate of s is defined to be any solution of the simultaneous equations (3.4).
The form of (3.4) immediately suggests an iterative procedure for finding the solution.

A, Obtain initial estimates 5§ (1<j<m). This can be any set of positive numbers summing
to unity, e.g. 5; = 1/m for all 7. '

B. Evaluate p1;;(s7 and v;(s%) for 1 /< NV and 1< /<m, and hence M (s”) and a,(s").

C. Obtain improved estimates s} by setting

st=msh forlgj<m,

D. Return to step B with st replacing s% ete,
E. Stop when the required accuracy has been achieved.
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Note; Another way to write my(s), which is useful if relatively few of the {4} and {8/} are
distinet, is

0= B (5] L) e omtt - o] B 9

where £, is the number of observations censored into the set 4, 95 Is the number iruncated
by the set Band I,(7) equals 1 if {g;, p;j< A and is zero otherwise. Also, sincs

= E,g = 273_3 =N,
4 B
M(s) can be more simaply expressed as

Shalz) )

We now examine the equivalence of seif-consistent and maximum likelihood estimation.
From {2.2), we sce that the log-likelthcod is given by

Consider the effect of increasing a particular component, s; say, by a small positive amount ¢ i
and then dividing all the {sg), including 5;+¢, by 1 +¢ in order to keep the sum equal fo unity.
We let d/{s) denote the value of the derivative of L with respect to ¢ at e = 0. Therefore

8 5548 By _
d;ffs)—-a—sL(m,...,m,.u,m) ate=0 I

8L m 8L :

= —3:‘;—;,_{9"35'; (3.7) 1
N m m

= Ez { (ﬂ‘z‘j / Elﬂfsksk) - (Bij / k‘élﬁik S?s)} (3.8)

for 1<j<m, From (3.3) and (3.8) we have
N (= =1
= ok la@+ 2 (B pass) ) 69

However,

Substituting in (3.9}, we obtain

m§) = {1 +%—((“S.)5] 5 (l<j<m). (3.10)
Now a necessary and sufficient condition for s to be an MLE is ;
foreach j elther di(s)=0 or 4E<0 withsy=0, (310 ‘

Thus from (3.10) and (3.11), we see immediately that the MLE § satisfies m{8) = § for all j,
and hence is self-consistent, Conversely, if the algorithm converges with limiting value §, then
§ must satisfy (3.11). (A continuity argument shows we cannot have d;(8) > 0 with § = 0.)
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Congerping convergence of the algorithm, we Jet s and s* be successive approximations
where, by (3.10), 87 = [1+{d,(8)/M(s)}]5; for L <j<m. Now by a Taylor series expansion we
have

L)L) ='§1(s —s) +0(s|s-s||ﬂ)

M(s) ES 4 }3.53 1(5){51 (ji) (élsjs_;—;)a}

1 m

where we have used (3.7) and have neplected terms of second and higher order, Thus

L(s"y» L{s) with equality only if, for each j}, either 5;= 0 or dj(s) = 0. Thus the algorithm ;

converges monotonely, at least for s® close enough to §s0 that the higher order terms can i

indeed be neglected. Also it is clear that we must choose all s > 0 (otherwise s = 0 for all k).
A maximum likelihood estimate F of Fis given by

0 fx<gy, |
FR={ i+t +8 I p<x<gy (<j<m-1),
1 if X> Py

and is undefined for x&[g;, p;] for 1<j<m. Therefore, when plotted, & consists of a series of
m+1 horizontal lines of increasing heights with gaps in between, where the way in which
increases occur is arbitrary. The variances and covariances of the non-zero {g} are given by
the inverse of the matrix of second derivatives of E with respect to the elements of
(83 82, ++.» Sy ) cOrresponding to the non-zoto elements of 8. Thus estimates of the variange of
F(x) can be calculated for x ¢ C, from which approximate standard errors can be obtained for
the height of each horizontal line,

4, DHSCUSSION

The self-consistency algorithm is automatic, simple to implement and is intuitively appeal-
ing. This contrasts with the direct but cumbersome constrained Newton—Raphson {NR)
methods used by Peto (1973). Asano (1963) also used NR methods for a truncated multi-
nomial. Hoecking and Oxspring (1971) have proposed a similar algorithm for multinomia! data
subject to censoring without truncation. Also, upon reparametrization, it is possible to extend
the method of Blight (1970} to this case, since the multinomial is in the exponential family of -
distributions.

For the problem of companng two or more samples, each of which are subject to arbitrary
censoring and/or truncation, # and L can be used to construct the anaiogue of the logrank test
{Peto)ané Pete, 1972). Another possible application is to the regression methods of Miller
(1974).

At a late revision of this paper, a referee kindly drew the author’s atiention o a recent
unpublished maruseript by Dempster er al. (1976}, In a very elegant and comprehensive
theory of maximum likelithood with incomplete data, they develop the “EM™ algorithm and its
properties. The method described in Section 3 can be viewed as an example of an EM
algorithm.

Bt e
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